

NuDAQ-2500 Series

High Performance Analog Output and Multi-function Data Acquisition Cards

User's Manual

 Manual Rev.
 2.01

 Revision Date:
 March 19, 2006

 Part No:
 50-11221-2000

Advance Technologies; Automate the World.

Copyright 2007 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Getting service

Customer satisfaction is our top priority. Contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site	http://www.adlinktech.com	
Sales & Service	service@adlinktech.com	
Telephone No.	+886-2-8226-5877	
Fax No.	+886-2-8226-5717	
Mailing Address	9F No. 166 Jian Yi Road, Chungho City,	
	Taipei Hsien 235, Taiwan, ROC	

ADLINK TECHNOLOGY AMERICA, INC.

Sales & Service	info@adlinktech.com
Toll-Free	+1-866-4-ADLINK (235465)
Fax No.	+1-949-727-2099
Mailing Address	8900 Research Drive, Irvine, CA 92618, USA

ADLINK TECHNOLOGY EUROPEAN SALES OFFICE

Sales & Service	emea@adlinktech.com
Toll-Free	+49-211-4955552
Fax No.	+49-211-4955557
Mailing Address	Nord Carree 3, 40477 Düsseldorf, Germany

ADLINK TECHNOLOGY SINGAPORE PTE LTD

Sales & Service	singapore@adlinktech.com
Telephone No.	+65-6844-2261
Fax No.	+65-6844-2263
Mailing Address	84 Genting Lane #07-02A,
	Cityneon Design Center, Singapore 349584

ADLINK TECHNOLOGY INDIA LIAISON OFFICE

Sales & Service	india@adlinktech.com
Telephone No.	+91-80-57605817
Fax No.	+91-80-26671806
Mailing Address	No. 1357, Ground Floor, "Anupama",
	Aurobindo Marg JP Nagar (Ph-1)
	Bangalore - 560078

ADLINK TECHNOLOGY BEIJING

Sales & Service Telephone No. Fax No. Mailing Address market@adlinkchina.com.cn +82-2-20570565 +82-2-20570563 4F, Kostech Building, 262-2, Yangjae-Dong, Seocho-Gu, Seoul, 137-130, South Korea

ADLINK TECHNOLOGY BEIJING

Sales & Service Telephone No. Fax No. Mailing Address market@adlinkchina.com.cn +86-10-5885-8666 +86-10-5885-8625 Room 801, Building E, Yingchuangdongli Plaza, No.1 Shangdidonglu, Haidian District, Beijing, China

ADLINK TECHNOLOGY SHANGHAI

Sales & Servicemarket@adlinkchina.com.cnTelephone No.+86-21-6495-5210Fax No.+86-21-5450-0414Mailing AddressFloor 4, Bldg. 39, Caoheting Science and
Technology Park, No.333 Qinjiang Road,
Shanghai, China

ADLINK TECHNOLOGY SHENZHEN

Sales & Service	market@adlinkchina.com.cn
Telephone No.	+86-755-2643-4858
Fax No.	+86-755-2664-6353
Mailing Address	C Block, 2nd Floor, Building A1,
	Cyber-tech Zone, Gaoxin Ave. 7.S,
	High-tech Industrial Park S.,
	Nanshan District, Shenzhen,
	Guangdong Province, China

Using this manual

1.1 Audience and scope

This manual guides you when using ADLINK NuDAQ-2500 Series card. The card's hardware, signal connections, and calibration information are provided for faster application building. This manual is intended for computer programmers and hardware engineers with advanced knowledge of data acquisition and high-level programming.

1.2 How this manual is organized

This manual is organized as follows:

Chapter 1 Introduction: This chapter introduces the NuDAQ-2500 Series card including its features, specifications and software support information.

Chapter 2 Installation: This chapter presents the card's layout, package contents, and installation.

Chapter 3 Signal Connections: This part describes the NuDAQ-2500 Series card signal connections.

Chapter 4 Operation Theory: The operation theory of the NuDAQ-2500 Series card functions including A/D conversion, D/A conversion, and programmable function I/O are discussed in this chapter.

Chapter 5 Calibration: The chapter offers information on how to calibrate the NuDAQ-2500 Series card for accurate data acquisition and output.

Appendix: The Appendix demonstrates several waveform generation and other related information.

Warranty Policy: This presents the ADLINK Warranty Policy terms and coverages.

1.3 Conventions

Take note of the following conventions used throughout the manual to make sure that you perform certain tasks and instructions properly.

NOTE	Additional information, aids, and tips that help you per- form particular tasks.
IMPORTANT	Critical information and instructions that you MUST perform to complete a task.
	Information that prevents physical injury, data loss, mod-
WAINING	ule damage, program corruption etc. when trying to com- plete a particular task.

Table of Contents

Table of Contents i					
Li	List of Tables iii				
Li	st of I	Figures iv			
1	Intro	duction 1			
	1.1	Features 1			
	1.2	Applications 2			
	1.3	Specifications 3			
		Analog Output (AO)3			
		Analog Input (AI)4			
		General Purpose Digital I/O (G. P. DIO)5			
		General Purpose Timer/ Counter (GPTC)5			
		Analog Trigger (A.Trig)5			
		System Synchronous Interface (SSI)			
		Calibration			
		Physical			
		Operating Environment			
		Storage Environment			
	1.4	Block Diagram			
	1.5	Software Support			
		Programming Library			
		D2K-OCX: ActiveX Controls			
		DZR-OCA. ACTIVEA CONTIONS			
2	Insta	Illation 11			
	2.1	Package Contents 11			
	2.2	Unpacking 12			
	2.3	Card Layout 13			
		DAQe-2502/2501 13			
		DAQ-2502/250114			
		DPXI-2501/250215			
	2.4	PCI Configuration			
		Plug and Play16			
		Configuration			
		Troubleshooting16			

3	Sign	al Connections	17
	3.1	Connectors Pin Assignment	17
4	One	ration Theory	21
4	4.1	A/D Conversion	
	4.1	AD Data Format	
		Acquisition Modes	
		Scan Timing and Procedure	
		Trigger Modes	
		Bus-mastering DMA Data Transfer	
	4.2	D/A Conversion	
		Architecture	
		Hardware-Controlled Waveform Generation	
		Data Format in FIFO and Mapping	
		Setting up the DACs	
		Using DACs' Multiplying Characteristic	
		Software Update	
		Waveform Generation	
		Waveform Generation Timing	
		Trigger Modes	
		Iterative Waveform Generation	
	4.3	General Purpose Digital I/O	
	4.4	General Purpose Timer/Counter Operation	
		Basics Timer/Counter Function Basics	
		General Purpose Timer/Counter Modes	
	4.5	Trigger Sources	
		Software-Trigger	
		External Analog Trigger	
	4.6	Timing Signals	
		System Synchronization Interface	57
5	Cali	bration	59
-	5.1	Loading Calibration Constants	
	5.2	Auto-calibration	
	5.3	Saving Calibration Constants	
A	ppen	dix	61
	•		
W	arran	ity Policy	65

List of Tables

Table	3-1:	VHDCI-type (68-pin) Connector Pin Assignment	18
Table	3-2:	VHDCI-type (68-pin) Connector Legend	19
Table	4-1:	Bipolar Input Range and	
		Converted Digital Codes	22
Table	4-2:	Unipolar Input Range and	
		Converted Digital Codes	22
Table	4-3:	Trigger Modes and	
		Corresponding Trigger Sources	23
Table	4-4:	Summary of Counters for Programmable Scan	24
Table	4-5:	D/A Output Versus Digital Codes	34
Table	4-6:	Trigger Signals and	
		Corresponding Signal Sources	35
Table	4-7:	Summary of Counters for Waveform Generation	36
Table	4-8:	Ideal Transfer Characteristic of	
		Analog Trigger SRC1 (EXTATRIG)	53

List of Figures

Figure 1-1:	DAQ-/DAQe-/PXI-2502/2501 Block Diagram	7
Figure 2-1:	DAQe-2502/2501 Card Layout	
Figure 2-2:	DAQ-2502/2501 Card Layout	
Figure 2-3:	DAQ-2502/2501 Card Layout	
Figure 4-1:	Scan Timing	25
Figure 4-2:	Post Trigger	26
Figure 4-3:	Delay Trigger	27
Figure 4-4:	Post Trigger with Retrigger	
Figure 4-5:	Scatter/gather DMA	30
Figure 4-6:	Block Diagram of D/A Group	
Figure 4-7:	FIFO Data Format	32
Figure 4-8:	Typical D/A Timing of Waveform Generation	37
Figure 4-9:	Post Trigger Generation	38
Figure 4-10:	Delay-Trigger Generation	39
Figure 4-11:	Post Trigger or Delay-Trigger Generation with	
	Retrigger	40
Figure 4-12:	Finite Iterative Waveform Generation with	
	Post-trigger	41
Figure 4-13:	Post Trigger or Delay-Trigger Generation with	
	Retrigger	
	Stop Mode I	
	Stop Mode II	
	Stop Mode III	
	Mode1 Operation	
	Mode2 Operation	
	Mode 3 Operation	
	Mode4 Operation	
	Mode5 Operation	
	Mode6 Operation	
	Mode7 Operation	
	Mode8 Operation	
	Analog Trigger Block Diagram	
	Below-Low Analog Trigger Condition	
	Above-High Analog Trigger Condition	
	Inside-Region Analog Trigger Condition	
	High-Hysteresis Analog Trigger Condition	
	Low-Hysteresis Analog Trigger Condition	
Figure 4-31:	DAQ Signals Routing	56

1 Introduction

The NuDAQ-2500 Series features the DAQ-/DAQe-/PXI-2502/ 2501 advanced analog output card based on the 32-bit PCI/PCI Express[®]/PXI architecture. With high-performance designs and state-of-the-art technology, these cards are ideal for waveform generation, industrial process control, and signal analysis applications in medical, process control, etc.

1.1 Features

The NuDAQ-2500 Series cards come with the following features:

- ▶ 32-bit PCI/PCI Express/PXI bus, plug and play
- Up to 1 MS/s analog output rate and up to 400 KS/s analog input rate
- Analog output / input channels
 - DAQ-/DAQe-/PXI-2502: 8 / 4
 - DAQ-/DAQe-/PXI-2501: 4 / 8
- Programmable bipolar/unipolar range for analog input channels and individual analog output channels
- Programmable internal/external reference for individual analog output channels
- D/A FIFO size:
 - DAQ-/DAQe-/PXI-2502: 16K samples
 - DAQ-/DAQe-/PXI-2501: 8K samples
- ► A/D FIFO size: 2K samples
- Versatile trigger sources including software trigger, external digital trigger, analog trigger, and System Synchronization Interface (SSI) trigger
- A/D data transfer employing software polling and bus-mastering DMA with scatter/gather
- D/A data transfer employing software update and bus-mastering DMA with scatter/gather
- A/D trigger modes including post-trigger and delay-trigger with re-trigger functionality
- ► D/A outputs with waveform generation capability

- System Synchronization Interface (SSI)
- ► A/D and D/A fully auto-calibration
- Built-in programmable D/A external reference voltage compensator
- ► Jumper-less operation and software-configurable

1.2 Applications

- Automotive testing
- ► Arbitrary waveform generator
- ► Transient signal measurement
- ► ATE
- Laboratory automation
- ► Biotech measurement

1.3 Specifications

Analog Output (AO)

- ► Channels:
 - DAQ-/DAQe-/PXI-2501: 4-CH
 - DAQ-/DAQe-/PXI-2502: 8-CH
- DA converter: AD7945
- Maximum update rate: 1 MS/s
- Resolution: 12-bit
- FIFO buffer size:
 - ▷ DAQ-/DAQe-/PXI-2501: 8K
 - DAQ-/DAQe-/PXI-2502: 16K
- Data transfer: Programmed I/O, and bus-mastering DMA with scatter/gather
- ▶ Voltage reference: Internal 10 V or external up to ±10 V
- Output range:
 - ▷ Bipolar: ±10 V or ±external reference
 - > Unipolar: 0 V to 10V or 0 V to external reference
- ▶ Settling time for -10 V to +10 V step: 2 µs
- ▶ Slew rate: 20 V/µs
- Output coupling: DC
- Protection: Short-circuit to ground
- Output impedance: 0.1 Ω max.
- ▶ Output current: ±5 mA max.
- Power-on state: 0V steady-state
- ▶ Power-on glitch: ±600 mV/500 µs
- Offset error:
 - ▷ Before calibration: ±80 mV max
 - After calibration: ±2 mV max
- Gain error:
 - Before calibration: ±0.8% of output max
 - After calibration: ±0.02% of output max

Analog Input (AI)

- Channels:
 - ▷ DAQ-/PXI-2502: 4 single-ended
 - DAQ-/PXI-2501: 8 single-ended
- ► AD converter: LTC1416
- Max sampling rate: 400 KS/s
- Resolution: 14-bit
- FIFO buffer size: 2K samples
- Input range
 - ▷ Bipolar: ±10 V
 - > Unipolar: 0 V to 10 V
- ▶ Over-voltage protection: Continuous, ±35 V maximum
- Input impedance: 1 GΩ / 6 pF
- Trigger modes: Pre-trigger, post-trigger, middle-trigger, and delay trigger
- Data transfers: Programmed I/O and bus-mastering DMA with scatter/gather
- Input coupling: DC
- ► Offset error:
 - ▷ Before calibration: ±40 mV max
 - After calibration: ±1 mV max
- Gain error:
 - ▷ Before calibration: ±0.4% of max output
 - ▷ After calibration: ±1 mV of max output

General Purpose Digital I/O (G. P. DIO)

- ► Channels: 24 programmable input/output
- ► Compatibility: TTL/CMOS
- Input voltage:
 - ▷ Logic Low: VIL=0.8 V max; IIL=0.2 mA max
 - ▷ High: VIH=2.0 V max; IIH=0.02 mA max
- Output voltage:
 - ▷ Low: VOL=0.5 V max; IOL=8 mA max
 - \triangleright High: VOH=2.7 V min; IOH=400 μ A

General Purpose Timer/ Counter (GPTC)

- ► Channels: Two up/down timer/counters
- Resolution: 16-bit
- ► Compatibility: TTL/CMOS
- Clock source: Internal or external
- Maximum source frequency: 10 MHz

Analog Trigger (A.Trig)

- Source: External analog trigger (EXTATRIG)
- Level: ±10V external
- Resolution: 8-bit
- Slope: Positive or negative (software selectable)
- Hysteresis: Programmable
- Bandwidth: 400 KHz
- External Analog Trigger Input (EXTATRIG)
- Impedance: 40 KΩ
- ► Coupling: DC
- Protection: Continuous ±35V maximum

System Synchronous Interface (SSI)

Trigger lines: 7

Calibration

- Recommended warm-up time: 15 minutes
- Onboard reference: 5.0 V
- Temperature coefficient: ±2 ppm/°C
- ▶ Long-term stability: 6 ppm/1000 hr

Physical

- ▶ Dimension: 175 mm by 107 mm
- ▶ I/O connector: 68-pin female mini-SCSI type
- Power Requirement: +5 VDC; 1.6 A typical

Operating Environment

- ► Ambient temperature: 0°C to 55°C
- ► Relative humidity: 10% to 90% non-condensing

Storage Environment

- ► Ambient temperature: -20 to 70°C
- ▶ Relative humidity: 5% to 95% non-condensing

1.4 Block Diagram

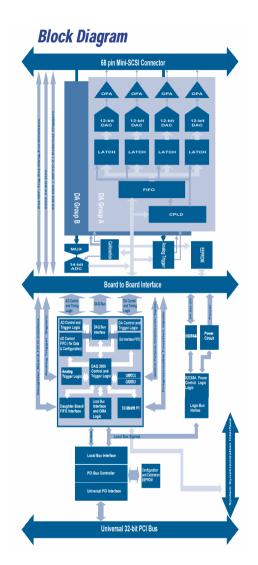


Figure 1-1: DAQ-/DAQe-/PXI-2502/2501 Block Diagram

1.5 Software Support

ADLINK provides versatile software drivers and packages for users' different approach to building up a system. ADLINK not only provides pro-gramming libraries such as DLL for most Windows-based systems, but also provide drivers for other software packages such as LabVIEW[®].

All software options are included in the ADLINK CD. Non-free software drivers are protected with licensing codes. Without the software code, you can install and run the demo version for two hours for trial/demonstration purposes. Please contact ADLINK dealers to purchase the formal license.

Programming Library

For customers who are writing their own programs, we provide function libraries for many different operating systems, including:

- ► D2K-DASK: Include device drivers and DLL for Windows[®] 98/NT/2000/XP. DLL is binary compatible across Windows 98/NT/2000/XP. This means all applications developed with D2K-DASK are compatible across Windows 98/NT/2000/ XP. The developing environment can be VB, VC++, Delphi, BC5, or any Windows programming language that allows calls to a DLL. The user's guide and function reference manual of D2K-DASK are in the CD. (\\Manual\Software Package\D2K-DASK)
- D2K-DASK/X: Include device drivers and shared library for Linux. The developing environment can be Gnu C/C++ or any programming language that allows linking to a shared library. The user's guide and function reference manual of D2K-DASK/X are in the CD. (\\Manual\Software Package\D2K-DASK-X.)

DAQ-LVIEW PnP: LabVIEW Driver

DAQ-LVIEW PnP contains the VIs, which are used to interface with NI's LabVIEW software package. The DAQ-LVIEW PnP supports Windows 98/NT/2000/XP. The LabVIEW drivers is shipped free with the card. You can install and use them without a license. For detailed information about DAQ-LVIEW PnP, refer to the user's guide in the CD. (\\Manual\Software Package\DAQ-LVIEW PnP)

D2K-OCX: ActiveX Controls

Customers who are familiar with ActiveX controls and VB/VC++ programming are suggested to use D2K-OCX ActiveX control component libraries for developing applications. D2K-OCX is designed for Windows 98/NT/2000/XP. For more details on D2K-OCX, refer to the user's guide in the CD. (\\Manual\Software Package\D2K-OCX)

The above software drivers are shipped with the card. Refer to the Software Installation Guide in the package to install these drivers.

In addition, ADLINK supplies ActiveX control software DAQBench. DAQBench is a collection of ActiveX controls for measurement or automation applications. With DAQBench, you can easily develop custom user interfaces to display your data, analyze data you acquired or received from other sources, or integrate with popular applications or other data sources. For more detailed information about DAQBench, refer to the user's guide in the CD. (\\Manual\Software Package\DAQBench Evaluation)

You can also get a free 4-hour evaluation version of DAQBench from the CD. DAQBench is not free. Contact ADLINK or your dealer to purchase the software license.

2 Installation

This chapter describes how to install the DAQ-/DAQe-/PXI-2502/ 2501 card. The contents of the package and unpacking information that you should be aware of are outlined first.

The DAQ-/DAQe-/PXI-2502/2501 card performs an automatic configuration of the IRQ and port address. You can use the PCI_SCAN software utility to read the system configuration.

2.1 Package Contents

In addition to this User's Manual, the package includes the following items:

- DAQ-/DAQe-/PXI-2502/2501 multi-function data acquisition card
- ADLINK All-in-one CD
- ► Software Installation Guide

If any of these items are missing or damaged, contact the dealer from whom you purchased the product. Save the shipping materials and carton in case you want to ship or store the product in the future.

2.2 Unpacking

Your DAQ-/DAQe-/PXI-2502/2501 card contains electro-static sensitive components that can be easily be damaged by static electricity.

Therefore, the card should be handled on a grounded anti-static mat. The operator should be wearing an anti-static wristband, grounded at the same point as the anti-static mat.

Inspect the card package for obvious damages. Shipping and handling may cause damage to the card. Be sure there are no shipping and handling damages on the modules carton before continuing.

After opening the card module carton, extract the system module and place it only on a grounded anti-static surface with component side up.

Again, inspect the module for damages. Press down on all the socketed IC's to make sure that they are properly seated. Do this only with the module place on a firm flat surface.

You are now ready to install your DAQ-/DAQe-/PXI-2502/2501 card.

NOTE DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN DAMAGED.

2.3 Card Layout

DAQe-2502/2501

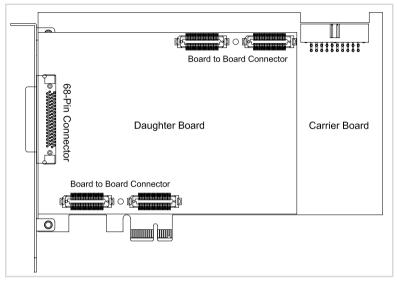


Figure 2-1: DAQe-2502/2501 Card Layout

DAQ-2502/2501

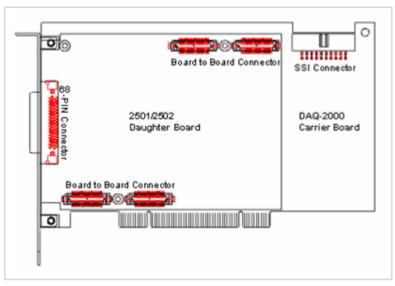


Figure 2-2: DAQ-2502/2501 Card Layout

DPXI-2501/2502

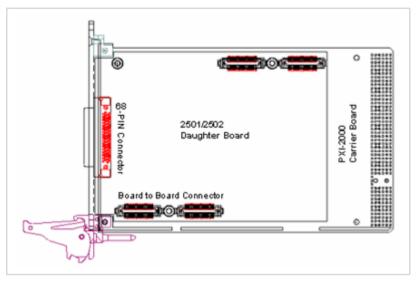


Figure 2-3: DAQ-2502/2501 Card Layout

2.4 PCI Configuration

Plug and Play

With support for plug and play, the card requests an interrupt number via its PCI controller. The system BIOS responds with an interrupt assignment based on the card information and on known system parameters. These system parameters are determined by the installed drivers and the hardware load seen by the system.

Configuration

The board configuration is done on a board-by-board basis for all PCI boards in the system. Because configuration is controlled by the system and software, there is no jumper setting required for base address, DMA, and interrupt IRQ.

The configuration is subject to change with every boot of the system as new boards are added or removed.

Troubleshooting

If your system doesn't boot or if you experience erratic operation with your PCI board in place, it is likely caused by an interrupt conflict. The BIOS Setup may be incorrectly configured. Consult the BIOS documentation that comes with your system to solve this problem.

3 Signal Connections

This chapter describes DAQ-/DAQe-/PXI-2502/2501 card connectors and the signal connection between the DAQ-/DAQe-/PXI-2502/2501 card and external devices.

3.1 Connectors Pin Assignment

The DAQ-/DAQe-/PXI-2502/2501 card is equipped with two 68-pin VHDCI-type connectors (AMP-787254-1). These are used for digital input/output, analog input/output, timer/counter signals, etc. The pin assignments of the connectors are defined in Table 3-1.

AO_0135AGNDAO_1236AGNDAO_2337AGNDAO_3438AGNDAOEXTREF_A/AI_0539AGNDAI_1640AGNDEXTATRIG/AI_2741AGNDAOEXTREF_B/AI_3842AGNDAOEXTREF_B/AI_51044AGNDAO_4/AI_4943AGNDAO_6/AI_61145AGNDAO_6/AI_61145AGNDAO_7/AI_71246AGNDAO_TRIG_OUTA1347EXTWFTRG_AAO_TRIG_OUTA1448EXTWFTRG_BGPTC1_SRC1549VCCGPTC0_GATE1751GPTC1_GATEGPTC0_OUT1852GPTC1_OUTGPTC0_UPDOWN1953GPTC1_UPDOWNRESERVED2054DGNDAFI12155AFI0PB52357PB4PB52357PB4PB62458PB2PB72559PB0PC12660PC6PC52761PC4DGND2862DGNDPC13064PC0PA13165PA6PA33367PA2PA13468PA0				
AO_2 3 37 AGND AO_3 4 38 AGND AOEXTREF_A/AL0 5 39 AGND AOEXTREF_A/AL2 7 41 AGND EXTATRIG/AL2 7 41 AGND AOEXTREF_B/AL3 8 42 AGND AO A/AL4 9 43 AGND AO AOL4/AL4 9 43 AGND AO AO TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TO GPTC1_SC GPTC1_OUT	AO_0		35	AGND
AO 3 4 38 AGND AOEXTREF_A/AI 5 39 AGND AI 6 40 AGND EXTATRIG/AI 7 41 AGND AOEXTREF_B/AI 8 42 AGND AO 4/AI 9 43 AGND AO 5/AI 10 44 AGND AO 5/AI 10 44 AGND AO 6/AI 1 45 AGND AO 7/AI 12 46 AGND AO 7/AI 12 46 AGND AO TRIG_OUTA 13 47 EXTWFTRG_A AO TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_OUT GPHT0	AO_1	2	36	AGND
AOEXTREF_A/AI_0 5 39 AGND AI_1 6 40 AGND EXTATRIG/AI_2 7 41 AGND AOEXTREF_B/AI_3 8 42 AGND AO_4/AI_4 9 43 AGND AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND GPTS 23 57 PB4 GPPB3 24 58 PB2 GPPC3 27 61 PC4 GPPC4 30 62	AO_2	3	37	AGND
AI_1 6 40 AGND AI_1 6 40 AGND EXTATRIG/AI_2 7 41 AGND AOEXTREF_B/AI_3 8 42 AGND AO_4/AI_4 9 43 AGND AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_GATE GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB5 23 57 PB4 PB7 22 56 PB6 PB8 24 58 PB2 PB7 24 58 PB2 </td <td>AO_3</td> <td>4</td> <td>38</td> <td>AGND</td>	AO_3	4	38	AGND
EXTATRIG/AI_2 7 41 AGND AOEXTREF_B/AI_3 8 42 AGND AO_4/AI_4 9 43 AGND AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB3 24 58 PB2 PB4 25 59 PB0 PC4 20 A	AOEXTREF_A/AI_0	5	39	AGND
AOEXTREF_B/AI_3 8 42 AGND AO_4/AI_4 9 43 AGND AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB7 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 <td>Al_1</td> <td>6</td> <td>40</td> <td>AGND</td>	Al_1	6	40	AGND
AO_4/AI_4 9 43 AGND AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB7 22 56 PB6 PB3 24 58 PB2 PB4 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND <t< td=""><td>EXTATRIG/AI_2</td><td>7</td><td>41</td><td>AGND</td></t<>	EXTATRIG/AI_2	7	41	AGND
AO_5/AI_5 10 44 AGND AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB8 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2	AOEXTREF_B/AI_3	8	42	AGND
AO_6/AI_6 11 45 AGND AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB8 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 <tr< td=""><td>AO_4/AI_4</td><td>9</td><td>43</td><td>AGND</td></tr<>	AO_4/AI_4	9	43	AGND
AO_7/AI_7 12 46 AGND AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB8 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0	AO_5/AI_5	10	44	AGND
AO_TRIG_OUTA 13 47 EXTWFTRG_A AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB7 22 56 PB4 PB3 24 58 PB2 PB4 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA5 32 66 PA4 <td< td=""><td>AO_6/AI_6</td><td>11</td><td>45</td><td>AGND</td></td<>	AO_6/AI_6	11	45	AGND
AO_TRIG_OUTB 14 48 EXTWFTRG_B GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB7 22 56 PB6 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA3	AO_7/AI_7	12	46	AGND
GPTC1_SRC 15 49 VCC GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB8 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	AO_TRIG_OUTA	13	47	EXTWFTRG_A
GPTC0_SRC 16 50 DGND GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	AO_TRIG_OUTB	14	48	EXTWFTRG_B
GPTC0_GATE 17 51 GPTC1_GATE GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN GESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	GPTC1_SRC	15	49	VCC
GPTC0_OUT 18 52 GPTC1_OUT GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA5 32 66 PA4 PA3 33 67 PA2	GPTC0_SRC	16	50	DGND
GPTC0_UPDOWN 19 53 GPTC1_UPDOWN RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA3 32 66 PA4 PA3 33 67 PA2	GPTC0_GATE	17	51	GPTC1_GATE
RESERVED 20 54 DGND AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA3 33 67 PA2	GPTC0_OUT	18	52	GPTC1_OUT
AFI1 21 55 AFI0 PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA5 32 66 PA4 PA3 33 67 PA2	GPTC0_UPDOWN	19	53	GPTC1_UPDOWN
PB7 22 56 PB6 PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC1 30 64 PC0 PA7 31 65 PA6 PA3 33 67 PA2	RESERVED	20	54	DGND
PB5 23 57 PB4 PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA5 32 66 PA4 PA3 33 67 PA2	AFI1	21	55	AFI0
PB3 24 58 PB2 PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA3 33 67 PA2	PB7	22	56	PB6
PB1 25 59 PB0 PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA3 33 67 PA2	PB5	23	57	PB4
PC7 26 60 PC6 PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA3 33 67 PA2	PB3	24	58	PB2
PC5 27 61 PC4 DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	PB1	25	59	PB0
DGND 28 62 DGND PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	PC7	26	60	PC6
PC3 29 63 PC2 PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	PC5	27	61	PC4
PC1 30 64 PC0 PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	DGND	28	62	DGND
PA7 31 65 PA6 PA5 32 66 PA4 PA3 33 67 PA2	PC3	29	63	PC2
PA5 32 66 PA4 PA3 33 67 PA2	PC1	30	64	PC0
PA3 33 67 PA2	PA7	31	65	PA6
	PA5	32	66	PA4
PA1 34 68 PA0	PA3	33	67	PA2
	PA1	34	68	PA0

Table 3-1: VHDCI-type (68-pin) Connector Pin Assignment

Legend:

Pin #	Signal Name	Reference	Direction	Description	
1~4	AO_<03>	AGND	Output	Voltage output of DA channel <03>	
5	AOEXTREF_A/AI_0	AGND	Input	External reference for AO channel <03> / AI input 2	
6	AI_1	AGND	Input	AI input 0	
7	EXTATRIG/AI_2	AGND	Input	External analog trigger / Al input 1	
8	AOEXTREF_B/AI_3	AGND	Input	External reference for AO channel <47> / AI input 3	
9~12	AO_<47>/AI_<47>	AGND	Output/Input	Voltage output of DA channel <47> / AI channel <47> (only for DAQ-2501)	
13,14	AO_TRIG_OUT_ <a,b></a,b>	DGND	Output	AO trigger signal for channel <03> <47>	
15,16	GPTC<0,1>_SRC	DGND	Input	Source of GPTC<0,1>	
17,51	GPTC<0,1>_GATE	DGND	Input	Gate of GPTC<0,1>	
18,52	GPTC<0,1>_OUT	DGND	Input	Output of GPTC<0,1>	
19,53	GPTC<0,1>_UPDOWN	DGND	Input	Up/Down of GPTC<0,1>	
20	RESERVED	—	_	Reserved Pin	
21,55	AFI<1,0>	DGND	Input	Auxiliary Function Input	
,22,56,23,57 ,24,58,25,59	PB<7,0>	DGND	PIO*	Programmable DIO of 8255 Port B	
26,60,27,61, 29,63,30,64	PC<7,0>	DGND	PIO*	Programmable DIO of 8255 Port C	
31,65,32,66, 33,67,34,68	PA<7,0>	DGND	PIO*	Programmable DIO of 8255 Port A	
35~46	AGND	_	_	Analog ground	
47,48	EXTWFTRIG_ <a,b></a,b>	DGND	Input	External waveform trigger for AO channel <03> <47>	
49	VCC	DGND	Power (Output)	+5V Power Source	
28,50,54,62	DGND	_	_	Digital ground	

Table 3-2: VHDCI-type (68-pin) Connector Legend

*PIO means Programmable Input/Output

4 Operation Theory

The operation theories of the DAQ-/DAQe-/PXI-2502/2501 card are described in this chapter. The functions include A/D conversion, D/A conversion, digital I/O, and general purpose counter/ timer. This operation theory will help you understand how to configure and program the DAQ-/DAQe-/PXI-2502/2501 card.

4.1 A/D Conversion

When using an A/D converter, you must know about the properties of the signal to be measured. You may decide which channel to use and how to connect the signals to the card. Refer to section 3.4. In addition, users should define and control the A/D signal configurations, including channels, gains, and polarities (unipolar/ bipolar).

The A/D acquisition is initiated by a trigger source and you must decide how to trigger the A/D conversion. The data acquisition will start once a trigger condition is matched.

After the end of an A/D conversion, the A/D data is buffered in a Data FIFO. The A/D data can now be transferred into the system memory for further processing.

Software polling and programmable scan acquisition modes are described in this chapter, as well as timing, trigger modes, trigger sources, and transfer methods.

AD Data Format

The data format of the acquired 14-bit A/D data is coded in 2's complement. Table 4-1 and Table 4-2 lists the valid input ranges and the ideal transfer characteristics.

Magnitude	Bipolar Input Range				Digital code
FSR	±10V	±5V	±2.5V	±1.25V	
LSB	1120.78uV	610.39uV	305.19uV	152.60uV	
FSR-1LSB	9.998779V	4.999389V	2.499694V	1.249847V	1FFF
Midscale + LSB	1120.78uV	610.39uV	305.19uV	152.60uV	0001
Midscale	0V	0V	0V	0V	0000
Midscale - LSB	-1120.78uV	-610.39uV	-305.19uV	-152.60uV	3FFF
-FSR	-10V	-5V	-2.5V	-1.25V	2000

 Table 4-1: Bipolar Input Range and Converted Digital Codes

Magnitude	Unipolar Input Range				Digital code
FSR	0V ~ 10V	0 ~ +5V	0 ~ +2.5V	0~+1.25V	
LSB	610.39uV	305.19uV	152.60uV	76.3uV	
FSR - LSB	4.999389V	2.499694V	1.249847V	1.249923V	1FFF
Midscale + LSB	5.000611V	2.500306V	1.250153V	0.625076V	0001
Midscale	5V	2.5V	1.25V	0.625V	0000
Midscale - LSB	4.999389V	2.499694V	1.249847V	1.249923V	3FFF
-FSR	0V	0V	0V	0V	2000

Table 4-2: Unipolar Input Range and Converted Digital Codes

Acquisition Modes

Software Polling

This is the easiest way to acquire a single A/D data. The A/D converter starts one conversion whenever the dedicated software command is executed. Then the software would poll the conversion status and read the A/D data back when it is available.

This method is very suitable for applications that needs to process A/D data in real time. Under this mode, the timing of the A/D conversion is fully controlled by the software. However, it is difficult to control the A/D conversion rate.

Programmable Scan

This method is suitable for applications that need to acquire A/ D data at a precise and fixed rate. A scan is a group of multiple channel samples and the scan interval is defined by the SI_counter. Likewise, the sample interval of the multiple channels is defined by the SI2_counter. Refer to Table 4-4 for more information.

The DAQ-/DAQe-/PXI-2502/2501 card can sample multiple channels in continuous/discontinuous ascending sequence. For example, you may program the DAQ-/DAQe-/PXI-2502/2501 card to perform a scan in the channel sequence of 1-2-4-1-2-4. Three trigger modes are available in programmable scan: post-trigger, delay-trigger, and post/delay-trigger with retrigger. Refer to Table 4-3 for a brief summary on trigger modes and their trigger sources.

Trigger Mode	Description	Trigger Sources	
Post-Trigger	Perform a scan right after the trigger occurs.		
Delay-Trigger	Scan delayed by the amount of time programmed after the trigger.	Software Trigger Digital Trigger Analog Trigger	
Post/Delay-Trigger with Retrigger	Perform repeated scan while trigger occurs and it could be under Post- Trigger or De-lay-Trigger mode.	SSI AD Trigger	

Table 4-3: Trigger Modes and Corresponding Trigger Sources

Scan Timing and Procedure

There are four counters that need to be specified prior to programmable scans. Refer to Table 4-4 for details.

Counter Name Width		Description	Notes	
SI_counter	24-bit	Scan Interval defines the interval between each scan.	Scan Interval = SI_counter / Time-base*	
SI2_counter	24-bit	Sampling Interval defines the interval between each sampled channel.	Sampling Interval = SI2_counter / Timebase*	
PSC_counter	24-bit	Post Scan Counts defines how many scans to be performed with respect to each trigger.		
Delay_counter 16-bi		Define the delay time for scan after trigger.	Delay Time = (Delay_counter / Time- base*), Timebase*=40M for DAQ/DAQe/PXI-2502/ 2501	

Table 4-4: Summary of Counters for Programmable Scan

The relationship between counters and acquisition timing is illustrated in Figure 4-1.

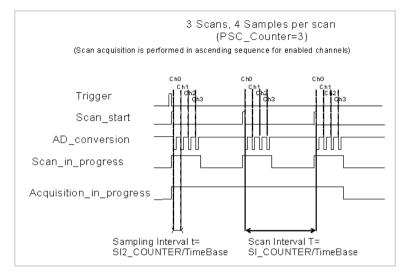


Figure 4-1: Scan Timing

NOTE The maximum A/D sampling rate is 400 KHz for DAQ-/ DAQe-/PXI-2502/2501 card. The minimum setting of SI2_counter is 100.

The Scan Interval may not be smaller than the interval of data Sampling Interval multiplied by the Number of channels per Scan. For example: SI_counter >= SI2_counter * NumChan_Counter.

Trigger Modes

Post-Trigger Acquisition

Use post-trigger acquisition when you want to perform scans right after a trigger signal. The number of scans to be performed after the trigger signal is specified by the PSC_counter, as illustrated in Figure 4-2. The total acquired data length is equal to:

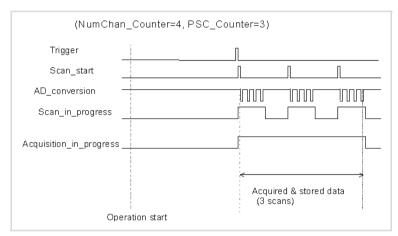


Figure 4-2: Post Trigger

Delay Trigger Acquisition

Use delay trigger when you want to delay the scan after a trigger signal. The delay time is determined by the Delay_counter, as shown in Figure 4-3.

The counter counts down on the rising edges of Delay_counter clock source after the trigger signal. When the count reaches 0, the DAQ-/DAQe-/PXI-2502/2501 card starts to perform the scan. The acquired data length is equal to the:

```
(number_of_channels_enabled_for_scan_acquisition
) * PSC_counter
```

The Delay_counter clock source can be software selected from internal 40 MHz Timebase, external input (AFI-1), or General Purpose Timer/Counter Output 0/1.

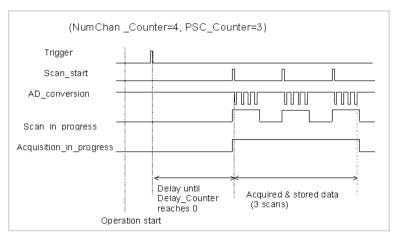


Figure 4-3: Delay Trigger

Post-Trigger or Delay-trigger Acquisition with Retrigger

Use post-trigger or delay-trigger acquisition with retrigger when you want to perform repeated scans with respect to the repeated triggers. Figure 4-4 illustrates this mode. Two scans are performed after the first trigger signal, and then waits for the next trigger signal. When the trigger signal occurs, it performs two more scans.

When retrigger function is disabled, only one trigger signal is be accepted after retrigger.

NOTE Retrigger signals asserted during scan process will be ignored.

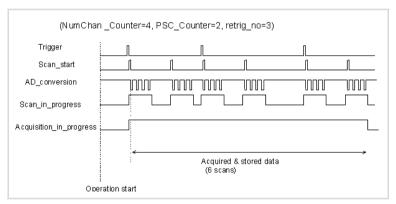


Figure 4-4: Post Trigger with Retrigger

Bus-mastering DMA Data Transfer

Bus Mastering DMA Mode

PCI bus-mastering DMA is necessary for high speed DAQ in order to utilize the maximum PCI bandwidth. The bus-mastering controller, which is built in the PLX PCI controller, controls the PCI bus when it becomes the master of the bus. Bus mastering reduces the required size of the onboard memory and reduces the CPU loading because data is directly transferred to the computer's memory without host CPU intervention.

The hardware temporarily stores the acquired data in the onboard Data FIFO buffer, then transfers the data to the userdefined DMA buffer in the host PC's memory. Bus-mastering DMA utilizes the fastest available transfer rate of PCI-bus. Once the analog acquisition operation starts, control returns to your program.

The DMA transfer mode is complicated to program. We recommend using a high-level program library to configure this card. If users would like to know more about software programs that can handle the DMA bus master data transfer, visit to http:// www.plxtech.com for more information on PCI controllers.

DMA with Scatter Gathering Capability

In multi-user or multi-tasking OS such as Microsoft Windows, Linux, etc., it is difficult to allocate a large continuous memory block to do the DMA transfer due to memory fragmentation. PLX PCI controller provides scatter/gather or chaining mode to link non-continuous memory blocks into a linked list, so you can transfer large amounts of data without being limited by the fragment of memory blocks. You can configure the linked list for the input DMA channel and the output DMA channel, individually.

Figure 4-5 shows a linked list that is constructed by three DMA descriptors. Each descriptor contains a PCI address, a local address, a transfer size, and the pointer to the next descriptor. You can collect fragmented memory blocks and chain their associative DMA descriptors altogether. The DAQ-/DAQe-/ PXI-2502/2501 software driver simple settings for the scatter/

gather function, including some sample programs in the ADLINK All-in-One CD.

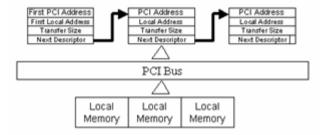


Figure 4-5: Scatter/gather DMA

4.2 D/A Conversion

The DAQ-/DAQe-/PXI-2502/2501 card offers flexible and versatile analog output scheme to fit your complex field applications. In order to take full advantages of the DAQ-/DAQe-/PXI-2502/2501 card, it is suggested that you carefully read this section.

Architecture

There are up to eight channels of 12-bit Digital-to-Analog Converter (DAC) available in the DAQ-/DAQe-/PXI-2502/2501 card. Four D/A channels are packed into one D/A group. The DAQ-/DAQe-/PXI-2502 comes with two D/A groups, while the DAQ-/DAQe-/PXI-2501 card has only one D/A group.

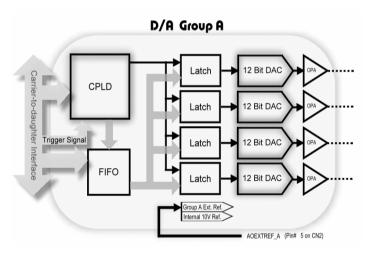


Figure 4-6: Block Diagram of D/A Group

(Group B of DAQ/DAQe-/PXI-2502 is identical to Group A shown above.)

Figure 4-6 shows the D/A block diagram. DAC are controlled implicitly by CPLD and have their outputs updated only when digital codes for all enabled DA channels are ready and latched. This ensures D/A conversions to be synchronized for each channel in the same D/A group. You can use this property to perform multichannel waveform generation without any phase-lag.

Hardware-Controlled Waveform Generation

FIFO is a hardware first-in first-out data queue that holds temporary digital codes for D/A conversion. When the DAQ-/DAQe-/PXI-2502/2501 card operates in waveform generation mode, the waveform patterns are stored in FIFO with 8K maximum samples. Waveform patterns larger than 8K are also supported by utilizing bus-mastering DMA transfer supported by the PCI controller. The data format in FIFO is shown in Figure 4-7.

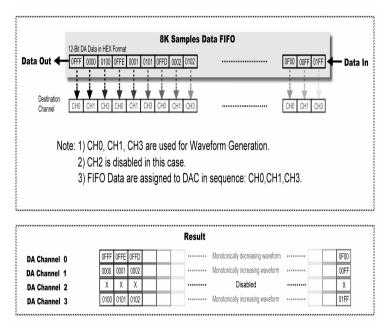


Figure 4-7: FIFO Data Format

Data Format in FIFO and Mapping

With hardware-based waveform generation, D/A conversions are updated automatically by CPLD rather than application software. Unlike the conventional software-based waveform generation, the precise hardware timing control guarantees non-distorted waveform generation even when host CPU is under heavy loading. Detailed function setup are discussed later on this chapter.

NOTE When using waveform generation mode, all the four DACs in the same D/A group must be configured for the same mode. However, any one of the DAC can be disabled. If you need to use the software update mode, you can use another D/A group on the DAQ-/DAQe-/PXI-2502 card.

Setting up the DACs

Before using the DACs, you must setup the reference source and its polarity. Each DAC has its own reference and polarity settings. For example, the internal voltage reference of D/A Group A is tied to internal +10V. However, you can still connect external reference through AOEXTREF (pin 5 on CN2) to a +3.3V voltage source, giving each DAC in D/A Group A two reference options: 10V or 3.3V. However, DA update timing, trigger source, and trigger/stop mode are all the same throughout a D/A Group.

The DAQ-/DAQe-/PXI-2502/2501 card provides the capability to fine tune the voltage reference from the external source. The external reference is fed thru an onboard calibrated circuit, with programmable offset. You can use this capability to generate precise D/A outputs.

Using DACs' Multiplying Characteristic

The D/A reference selection let you fully utilize the multiplying characteristics of the DACs. Digital codes sent to the D/A converters are multiplied by the reference to generate output.

Magnitude	Bipolar	Unipolar	
	Output	Output	Digital Code
FSR – LSB	+Vref * (2046 / 2048)	Vref * (4095 / 4096)	0FFF
Midscale + LSB	+Vref * (1 / 2048)	Vref * (2049 4096)	0801
Midscale	0	Vref * (2048 / 4096)	0800
Midscale – LSB	-Vref * (1 / 2048)	Vref * (2047 / 4096)	07FF
-FSR + LSB	-Vref * (2046 / 2048)	Vref * (1 / 4096)	0001
-FSR	-Vref	0	0000

Table 4-5: D/A Output Versus Digital Codes

The DAQ-/DAQe-/PXI-2502/2501 card can generate standard and arbitrary functions, continuously or piece-wisely. The Appendix illustrates all possible waveform patterns generated by the DAQ-/DAQe-/PXI-2502/2501 card in combination with various counters, clock sources, and voltage references.

Software Update

This method is suitable for applications that need to generate D/A output controlled by user programs. In this mode, the D/A converter generates one output once the software command is issued. However, it is difficult to determine the software update rate under a multi-task OS like Windows.

Waveform Generation

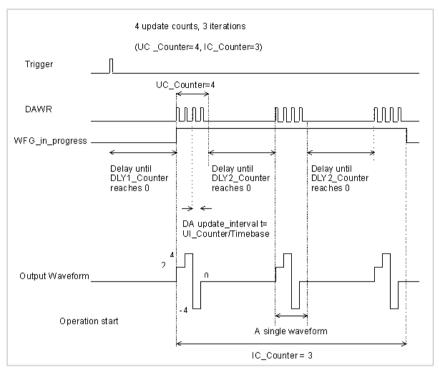
This method is suitable for applications that need to generate waveforms at a precise and fixed rate. Various programmable counters will facilitate users to generate complex waveforms with great flexibility.

Three event signals are involved in waveform generation: Start, DAWR (DA WRite), and Stop. Refer to Table 4-6 for a brief summary of waveform generation events and their corresponding trigger sources.

Event Signal	Descriptions	Trigger Sources
Start	Start Waveform Generation pro- cess.	Software Trigger Ext. Digital Trigger Analog Trigger SSI Trigger
DAWR	Write data to the DAC on the falling edges of DAWR.	Internal Update External Update SSI Update
Stop	Stop Waveform Generation	Software Trigger Ext. Digital Trigger Analog Trigger

 Table 4-6: Trigger Signals and Corresponding Signal Sources

Waveform Generation Timing


Six counters interact with the waveform to generate different DAWR timing, thus forming different waveforms. These are described in Table 4-7.

Counter Name	Width	Description	Note
UI_counter	24-bit	Update Interval, which defines the update inter- val between each data output.	Update Interval = UI_counter / Time-base*.
UC_counter	24-bit	Update Counts, which defines the number of data in a waveform.	When value in UC_counter is smaller than the size of waveform patterns, the waveform is generated piece-wisely.
IC_counter	16-bit	Iteration Counts, which defines how many times the waveform is gener- ated.	
DLY1_counter	16-bit	Define the delay time for waveform generation after the trigger signal.	Delay Time = (DLY1_counter / Clock Timebase)
DLY2_counter	16-bit	Define the delay time to separate consecutive waveform generation. Effective only in Iterative Waveform Generation mode.	Delay Time =(DLY2_counter / Clock Timebase)
Trig_counter	16-bit	Define the acceptable start trigger count when re-trigger function is enabled	Timebase*=40M for DAQ/ PXI-2500 Series

Table 4-7: Summary of Counters for Waveform Generation

NOTE The maximum D/A update rate is 1 MHz. The minimum UI_counter setting is 40.

Figure 4-8: Typical D/A Timing of Waveform Generation

(Assuming the data in the data buffer are 2V, 4V, -4V, 0V)

Trigger Modes

Post-Trigger Generation

Use post-trigger generation when you want to generate waveform right after a trigger signal. The number of patterns to be updated after the trigger signal is specified by UC_counter* IC_counter, as illustrated in Figure 4-9.

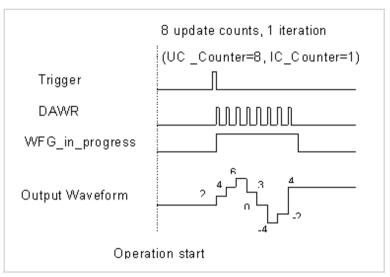


Figure 4-9: Post Trigger Generation

Delay-Trigger Generation

Use delay-trigger when you want to delay the waveform generation after the trigger signal. The delay time is determined by DLY1_counter as shown in Figure 4-10.

The counter counts down on the rising edges of DLY1_counter clock source after the start trigger signal. When the count reaches zero, the DAQ-/DAQe-/PXI-2502/2501 card starts to generate the waveform. The DLY1_counter clock source can be software selected from the internal 40 MHz timebase, external clock input (AFI-0), or GPTC output 0/1.

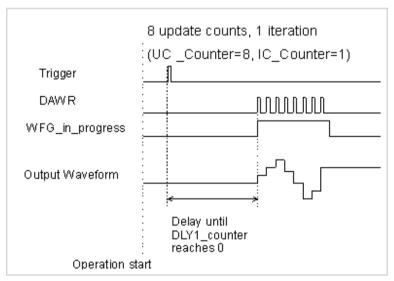


Figure 4-10: Delay-Trigger Generation

Post-Trigger or Delay-Trigger with Retrigger

Use post-trigger or delay-trigger with retrigger when you want to generate multiple waveforms with respect to multiple incoming trigger signals. You can set Trig_counter to specify the number of acceptable trigger signals.

Figure 4-11 illustrates this example with an Iterative Waveform Generation. Refer to next section for details. Two waveforms are generated after the first trigger signal. The board then waits for another trigger signal. When the next trigger signal is asserted, the board generates two more waveforms. After three trigger signals, as specified in Trig_Counter, no more trigger signals are accepted unless software trigger reset command is executed.

NOTE Start Trigger signals asserted during the waveform generation process are ignored.

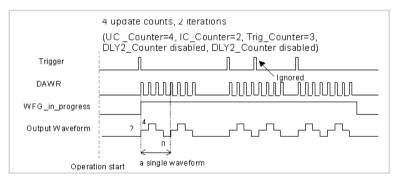


Figure 4-11: Post Trigger or Delay-Trigger Generation with Retrigger

Iterative Waveform Generation

You can set the IC_counter to generate iterative waveforms, no matter which trigger mode is used. The IC_counter stores the iteration number. Examples shown in Figure 4-12 and Figure 4-13 assumes that the digital codes in the FIFO are 2V, 4V, 2V, and 0V.

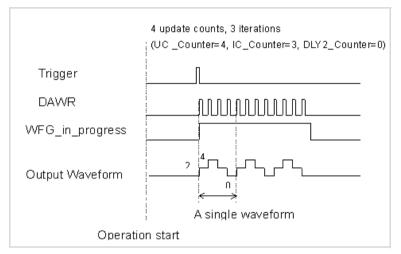


Figure 4-12: Finite Iterative Waveform Generation with Post-trigger

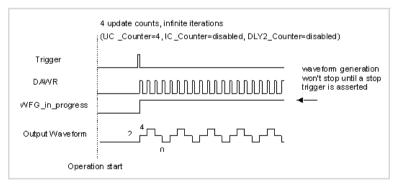


Figure 4-13: Post Trigger or Delay-Trigger Generation with Retrigger

When IC_counter is disabled, the waveform generation does not stop until a stop trigger is asserted. For Stop Mode, refer to the next section.

An onboard data FIFO is used to buffer the waveform patterns for waveform generation. If the size of a single waveform is smaller than that of the FIFO, after initially loading the data from the host memory, the data in FIFO is re-used when a single waveform generation is completed. It does not occupy the PCI bandwidth afterwards. However, if the size of a single waveform is larger than that of the FIFO, it needs to be intermittently loaded from the host memory via DMA, thus occupying the PCI bandwidth.

If the value specified in UC_counter is smaller than the sample size of the waveform patterns, the waveform is generated piecewisely. For example, if you defined a 16-sample sine wave and set the UC_counter to two, the generated waveform will be a 1/8-cycle sine wave for every waveform period. A complete sine wave will be generated for every 8-iterations. If value specified in the UC_counter is larger than the sample size of waveform LUT, i.e. 32, the generated waveform will be a 2-cycle sine wave for every waveform period.

In conjunction with different trigger modes and counter setups, you can manipulate a single waveform to generate different, more complex waveforms. For more information, refer to the Appendix.

DLY2_Counter in iterative Waveform Generation

To expand the flexibility of Iterative Waveform Generation, DLY2_counter was implemented to separate consecutive waveform generations.

The DLY2_counter starts counting down immediately after a single waveform generation is completed. When it reaches zero, the next iteration of waveform generation starts. If you are generating waveform piece-wisely, the next piece of waveform is generated. The DLY2_counter clock source can be software selected from internal 40 MHz timebase, external clock input (AFI-0), or GPTC output 0/1.

Stop Modes

You may stop waveform generation while it is still in progress, either by hardware or software trigger. The stop trigger sources can be software selected from internal software trigger, external digital trigger (AFI-0/1), or analog trigger. Three stop modes are provided to stop finite or infinite waveform generation.

Stop Mode I

After a mode I stop trigger is asserted, the waveform generation stops immediately. Figure 4-14 illustrates this example.

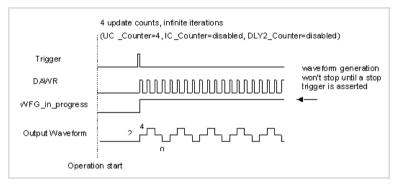


Figure 4-14: Stop Mode I

Stop Mode II

After a mode II stop trigger is asserted, the waveform generation continues to generate a complete waveform, then stops the operation.Figure 4-15 is an example of Stop Mode II. Since UC_counter is set to four, the total generated data points must be a multiple of four.

You can check WFG_in_progress (waveform generation in progress) status by software read-back to confirm the stop of a waveform generation.

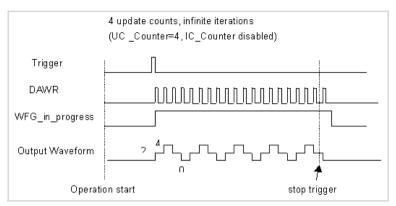


Figure 4-15: Stop Mode II

Stop Mode III

After a mode III stop trigger is asserted, the waveform generation continues until the iterative number of waveforms specified in IC_Counter is completed. Figure 4-16 is shown as an example. Since IC_Counter is set to three, the total generated waveforms must be a multiple of three.

You can check WFG_in_progress (waveform generation in progress) status by software read-back to confirm the stop of a waveform generation.

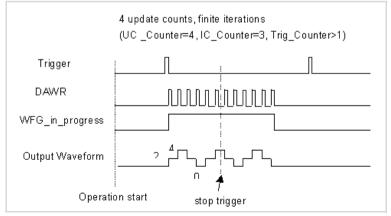


Figure 4-16: Stop Mode III

4.3 General Purpose Digital I/O

The DAQ-/DAQe-/PXI-2502/2501 card provides a 24-line general-purpose digital I/O (GPIO) via the 82C55A chip.

The 24-line GPIO are separated into three ports: Port A, Port B and Port C. High nibble (bit[7...4]), and low nibble (bit[3...0]) of each port can be individually programmed to be either inputs or outputs. Upon system startup or reset, all GPIO pins are reset to high impedance inputs.

For more information on 82C55A programmable I/O chip, visit http://www.intel.com.

4.4 General Purpose Timer/Counter Operation

Two independent 16-bit up/down timer/counter are embedded in FPGA firmware for user applications. They have the following features:

- Counting direction can be controlled via hardware or software
- Selectable counter clock source from either internal or external clock up to 10 MHz
- ► Programmable gate selection
- Programmable input and output signal polarities, either active-high or active-low
- ► Initial Count can be loaded via software
- Current count value can be read-back by software without affecting circuit operation

Basics Timer/Counter Function Basics

Each timer/counter has three inputs that can be controlled via hardware or software. These are clock input (GPTC_CLK), gate input (GPTC_GATE), and up/down control input (GPTC_UPDOWN).

The GPTC_CLK input acts as a clock source to the timer/counter. Active edges on the GPTC_CLK input increment or decrement the counter. The GPTC_UPDOWN input determines whether the counter is counting up or down. The GPTC_GATE input is a control line that acts as a counter enable or a counter trigger signal in different modes.

The output of timer/counter is GPTC_OUT. After power-up, GPTC_OUT is pulled high by a 10K resistor. GPTC_OUT goes low after the DAQ board is initialized.

All the polarities of input/output signals can be programmed via software. In this section, all timing figures assume that GPTC_CLK, GPTC_GATE, and GPTC_OUT are set to be positive-logic, meaning they're triggered on the rising-edge.

General Purpose Timer/Counter Modes

Eight programmable timer/counter modes are provided. All modes start operations following the software start command. The GPTC software reset command initializes the status of the counter and re-loads the initial value to the counter.

Mode1: Simple Gated-Event Counting

The counter counts the number of pulses on the GPTC_CLK after the software start. Initial count value can be loaded via software. Current count value can be read-back by software at anytime. GPTC_GATE is used to enable/disable counting. When GPTC_GATE is inactive, the counter halts the current count value. Figure 4-17 illustrates the operation with initial count = 5 in down-counting mode.

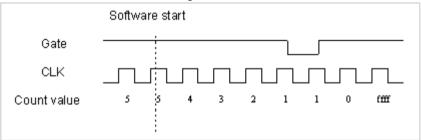
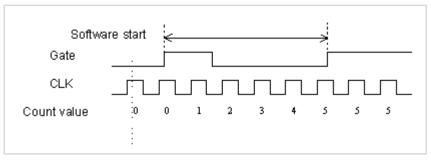



Figure 4-17: Mode1 Operation

Mode2: Single Period Measurement

The counter counts the period of the signal on GPTC_GATE in terms of GPTC_CLK. Initial count can be loaded via software. After the software start, the counter counts the number of active edges on GPTC_CLK between two active edges of GPTC_GATE. After the completion of the period measurement, GPTC_OUT outputs high and current count value can be read-back by software. Figure 4-18 illustrates the operation where initial count = 0, up-counting mode.

Mode3: Single Pulse-width Measurement

The counter counts the pulse-width of the signal on GPTC_GATE in terms of GPTC_CLK. Initial count can be loaded via software. After the software start, the counter counts the number of active edges on GPTC_CLK when GPTC_GATE is active. GPTC_OUT outputs high, and current count value can be read-back via software after the completion of the pulse-width measurement. Figure 4-19 illustrates the operation where initial count = 0 in up-counting mode.

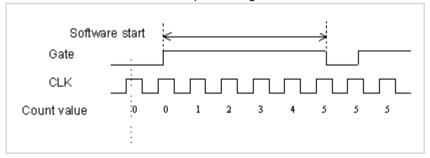
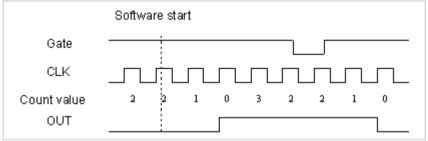



Figure 4-19: Mode 3 Operation

Mode4: Single Gated Pulse Generation

This mode generates a single pulse with programmable delay and programmable pulse-width following the software start. These software programmable parameters could be specified in terms of periods of the GPTC_CLK. GPTC_GATE is used to enable/disable counting. When GPTC_GATE is inactive, the counter halts the counting. Figure 4-20 illustrates the generation of a single pulse with pulse-delay of two and pulse-width of four.

Figure 4-20: Mode4 Operation

Mode5: Single Triggered Pulse Generation

This function generates a single pulse with programmable delay and programmable pulse-width following an active GPTC_GATE edge. These software programmable parameters can be specified in terms of periods of the GPTC_CLK input. Once the first GPTC_GATE edge triggers the single pulse, GPTC_GATE takes no effect until the software start is re-executed. Figure 4-21 illustrates the generation of a single pulse with pulse delay of two and pulse-width of four.

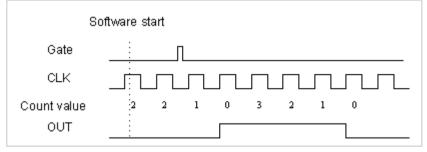
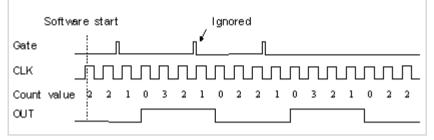



Figure 4-21: Mode5 Operation

Mode6: Re-triggered Single Pulse Generation

This mode is similar to mode 5 except that the counter generates a pulse following every active edge on GPTC_GATE. After the software start, every active GPTC_GATE edge triggers a single pulse with programmable delay and pulse-width. Any GPTC_GATE trigger that occurs during the pulse generation is ignored. Figure 4-22 illustrates the generation of two pulses with pulse delay of two and pulse-width of four.

Figure 4-22: Mode6 Operation

Mode7: Single Triggered Continuous Pulse Generation

This mode is similar to mode 5, except that the counter generates continuous periodic pulses with programmable pulse interval and pulse-width following the first active edge of GPTC_GATE. Once the first GPTC_GATE edge triggers the counter, GPTC_GATE takes no effect until the software start is re-executed. Figure 4-23 illustrates the generation of two pulses with pulse delay of four and pulse-width of three.

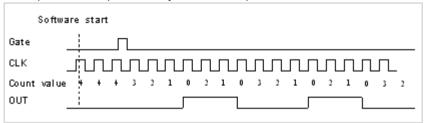


Figure 4-23: Mode7 Operation

Mode8: Continuous Gated Pulse Generation

This mode generates periodic pulses with programmable pulse interval and pulse-width following the software start. GPTC_GATE is used to enable/disable counting. When GPTC_GATE is inactive, the counter halts the current count value. Figure 4-24 illustrates the generation of two pulses with pulse delay of four and pulse-width of three.

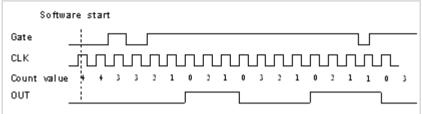


Figure 4-24: Mode8 Operation

4.5 Trigger Sources

The DAQ-/DAQe-/PXI-2502/2501 card provides flexible trigger selections. In addition to software trigger, the DAQ-/DAQe-/PXI-2502/2501 card also supports external analog and digital triggers. You can configure the trigger source for A/D and D/A processes individually via software.

NOTE A/D and D/A conversions share the same analog trigger.

Software-Trigger

This trigger mode does not need any external trigger source. The trigger asserts right after you execute the specified function call. A/ D and D/A processes can receive an individual software trigger.

External Analog Trigger

The analog trigger circuitry routing is shown in the Figure 4-25. The analog multiplexer selects either a direct analog input from the EXTATRIG pin (SRC1) on the 68-pin connector CN1 or the input signal of ADC (SRC2). The range of trigger level for SRC1 is $\pm 10V$ and the resolution is 78mV (refer to Table 4-8), while the trigger range of SRC2 is the full-scale range of AD input, and the resolution is the desired range divided by 256.

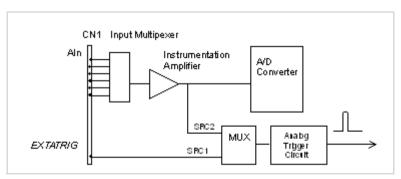


Figure 4-25: Analog Trigger Block Diagram

Trigger Level digital setting	Trigger voltage
0xFF	9.92V
0xFE	9.84V
0x81	V80.0
0x80	0
0x7F	-0.08V
0x01	-9.92V
0x00	-10V

Table 4-8: Ideal Transfer Characteristic of Analog Trigger SRC1 (EXTATRIG)

The trigger signal asserts when an analog trigger condition is met. There are five analog trigger conditions in DAQ-/DAQe-/PXI-2502/ 2501 card. The DAQ-/DAQe-/PXI-2502/2501 card uses two threshold voltages: Low_Threshold and High_Threshold to compose five different trigger conditions. You can configure the trigger conditions easily via software.

Below-Low Analog Trigger Condition

Figure 4-26 shows the below-low analog trigger condition, the trigger signal asserts when the input analog signal is lower than the Low_Threshold voltage. High_Threshold setting is not used in this trigger condition.

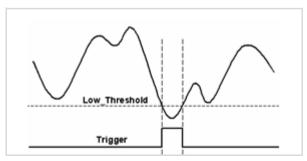


Figure 4-26: Below-Low Analog Trigger Condition

Above-High Analog Trigger Condition

Figure 4-27 shows the above-high analog trigger condition, the trigger signal asserts when the input analog signal is higher than the High_Threshold voltage. The Low_Threshold setting is not used in this trigger condition.

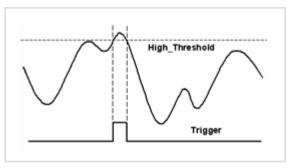


Figure 4-27: Above-High Analog Trigger Condition

Inside-Region Analog Trigger Ccondition

Figure 4-28 shows the inside-region analog trigger condition, the trigger signal asserts when the input analog signal level falls in the range between the High_Threshold and the Low_Threshold voltages.

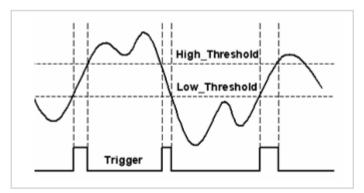


Figure 4-28: Inside-Region Analog Trigger Condition

High-Hysteresis Analog Trigger Condition

Figure 4-29 shows the high-hysteresis analog trigger condition. The trigger signal asserts when the input analog signal level is higher than the High_Threshold voltage, where the hysteresis region is determined by the Low_Threshold voltage.



Figure 4-29: High-Hysteresis Analog Trigger Condition

Low-Hysteresis Analog trigger condition

Figure 4-30 shows the low-hysteresis analog trigger condition. The trigger signal asserts when the input analog signal level is lower than the Low_Threshold voltage where the hysteresis region is determined by the High_Threshold voltage.

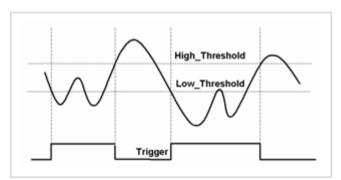


Figure 4-30: Low-Hysteresis Analog Trigger Condition

4.6 Timing Signals

In order to meet the requirements for user-specific timing or synchronizing multiple boards, the DAQ-/DAQe-/PXI-2502/2501 card provides a flexible interface for connecting timing signals with external circuitry or other boards. The DAQ timing of the DAQ-/ DAQe-/PXI-2502/2501 card is composed of a bunch of counters and trigger signals in the FPGA on board.

There are seven timing signals related to the DAQ timing, which in turn influence the A/D, D/A process, and GPTC operation. These signals are fed through the Auxiliary Function Inputs pins (AFI) or the System Synchronization Interface bus (SSI). We implemented a multiplexer in the FPGA to select the desired timing signal from these inputs as shown in the Figure 4-31.

You can use the SSI to achieve synchronization between multiple boards, or use the AFI to derive timing signals from an external timing circuit.

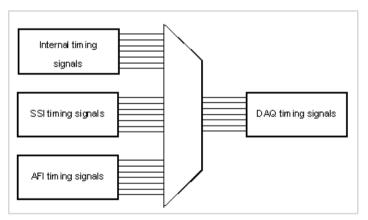


Figure 4-31: DAQ Signals Routing

System Synchronization Interface

SSI uses bi-directional I/O to provide flexible connections between boards. You can choose each of the seven timing signals and which board to be the SSI master. The SSI master can drive the timing signals of the slaves. You can thus achieve better synchronization between boards.

Note that during power-up or reset, the DAQ board resets and uses its internal timing signals.

5 Calibration

This chapter introduces the calibration process to minimize AD measurement errors and DA output errors.

5.1 Loading Calibration Constants

The DAQ-/DAQe-/PXI-2502/2501 card is factory-calibrated before shipment. The associated calibration constants of the TrimDACs firmware to the onboard EEPROM. TrimDACs are devices containing multiple DACs within a single package. TrimDACs do not have memory capability. That means the calibration constants do not retain their values after the system power is turned off. Loading calibration constants is the process of loading the values of TrimDACs firmware stored in the onboard EEPROM. ADLINK provides a software utility that automatically reads the calibration constants automatically, if necessary.

There is a dedicated space for storing calibration constants in the EEPROM. In addition to the default bank of factory calibration constants, there is one user-utilization bank. This bank allows you to load the TrimDACs firmware values either from the original factory calibration or from a subsequently-performed calibration.

Because of the fact that measurements and outputs errors may vary depending on time and temperature, it is recommended that you calibrate the card when it is integrated in your computing environment. The auto-calibration function is presented in the following sections.

5.2 Auto-calibration

Through the DAQ-/DAQe-/PXI-2502/2501 card auto-calibration feature, the calibration software measures and corrects almost all calibration errors without any external signal connections, reference voltage, or measurement devices.

The DAQ-/DAQe-/PXI-2502/2501 card comes with an onboard calibration reference to ensure the accuracy of auto-calibration. The reference voltage is measured in the production line through a digital potentiometer and compensated in the software. The calibration constant is memorized after this measurement. We do not recommended adjustment of the onboard calibration reference except when an ultra-precision calibrator is available.

NOTES

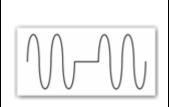
- Warm the card up for at least 15 minutes before initiating auto-calibration.
- Remove the cable before auto-calibrating the card since the DA outputs are changed during the process.

5.3 Saving Calibration Constants

When auto-calibration is completed, you can save the new calibration constants to the user-configurable banks in the EEPROM. The date and the temperature when you ran auto-calibration is saved with the calibration constants. You can store three sets of calibration constants according to three different environments and re-load the calibration constants later. for users to save calibration constants in an easy manner.

Appendix

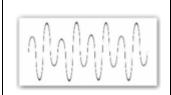
Waveform Generation Demonstration


Combined with six counters, selectable trigger sources, external reference sources, and time base, the DAQ-/DAQe-/PXI-2502/ 2501 provides the capabilities to generate complex waveforms. Various modes shown below can be mixed together to generate waveforms that are even more complex.

Although you can always load a new waveform to generate any desired waveform, we suggest using hardware capabilities to maximize the card's efficiency and flexibility.

Standard Function		
	Waveforms including sine wave, triangular wave, saw wave, ramp, etc., can be converted to Waveform LUT. Using larger waveform means trading maximum output rate for lower harmonic distortion.	
Arbitrary Function		
	User-defined arbitrary function without size limit can be generated. You can also concatenate various standard functions of same length into one arbitrary function and setup piece-wise generation, so each standard function can be generated in sequence, with a user-definable intermediate space.	
Standard Function w. Frequency Variant		
	You can alter the frequency of generated wave- forms by driving DAWR from external signal via AF0/AF1/SSI. The resultant updating rate should be kept within 1 MHz.	

Iterative Generation w. Intermediate Space


Utilize DLY2_counter to separate consecutive waveform generations in iterative generation mode. In this demo, the original standard sine wave is repeated several times as specified in IC_counter, with intermediate space determined by DLY2_counter.

Piece-wise Generation

When the value specified in UC_counter is smaller than the sample size of waveform, the waveform is generated piece-wisely. The intermediate space between each piece is determined by DLY2_counter. In this demo, the UC_counter is set to 1/8 of the sample size of waveform.

Amplitude Modulated

When external D/A reference is used, applying sinusoidal voltage reference will result in an amplitude modulated (AM) waveform generation. You can use one D/A channel to generate sine wave, loop it back to AOEXTREF_A/B pin, and generate AM waveform by another D/A channel using external reference. All can be done in a single D/A group.

Frequency Modulated

By feeding AFI0/AFI1 with PWM source, pulse train from VCO, or any time-varying digital signal, DAQ-/DAQe-/PXI-2502/2501 is capable of generating frequency modulated (FM) waveform. Since all four channels are synchronized in a D/A group, precise quadrature waveform generation is guarantied, provided the waveform are shifted 90degree for the other channel. Phase difference of any degree can also be setup. Combined with external High-speed programmable Digital I/O card, Phase-Shift-Keying or Phase-Reversal-Keying can also be achieved.

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all the after-sales services we offer, please read the following carefully.

- Before using ADLINK's products please read the user manual and follow the instructions exactly. When sending in damaged products for repair, please attach an RMA application form which can be downloaded from: http:// rma.adlinktech.com/policy/.
- 2. All ADLINK products come with a limited two-year warranty, one year for products bought in China:
 - The warranty period starts on the day the product is shipped from ADLINK's factory.
 - Peripherals and third-party products not manufactured by ADLINK will be covered by the original manufacturers' warranty.
 - For products containing storage devices (hard drives, flash cards, etc.), please back up your data before sending them for repair. ADLINK is not responsible for any loss of data.
 - Please ensure the use of properly licensed software with our systems. ADLINK does not condone the use of pirated software and will not service systems using such software. ADLINK will not be held legally responsible for products shipped with unlicensed software installed by the user.
 - For general repairs, please do not include peripheral accessories. If peripherals need to be included, be certain to specify which items you sent on the RMA Request & Confirmation Form. ADLINK is not responsible for items not listed on the RMA Request & Confirmation Form.

- 3. Our repair service is not covered by ADLINK's guarantee in the following situations:
 - Damage caused by not following instructions in the User's Manual.
 - Damage caused by carelessness on the user's part during product transportation.
 - Damage caused by fire, earthquakes, floods, lightening, pollution, other acts of God, and/or incorrect usage of voltage transformers.
 - Damage caused by unsuitable storage environments (i.e. high temperatures, high humidity, or volatile chemicals).
 - Damage caused by leakage of battery fluid during or after change of batteries by customer/user.
 - Damage from improper repair by unauthorized ADLINK technicians.
 - Products with altered and/or damaged serial numbers are not entitled to our service.
 - ► This warranty is not transferable or extendible.
 - Other categories not protected under our warranty.
- 4. Customers are responsible for shipping costs to transport damaged products to our company or sales office.
- To ensure the speed and quality of product repair, please download an RMA application form from our company website: http://rma.adlinktech.com/policy. Damaged products with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff: service@adlinktech.com.